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Abstract

The commoditization of machine learning is fuelling the
demand for compute required to both train large models
and infer from them. At the same time, scaling the perfor-
mance of individual microprocessors to satisfy the demand
for compute has become increasingly difficult since the end
of Moore’s law and Dennard scaling. As a result, compute
resources in modern servers are distributed across multiple
accelerators on the server board. In this work, we make the
case for using optics to interconnect accelerators within a
server. A key benefit of on-board chip-to-chip optical con-
nectivity is its ability to dynamically allocate bandwidth
between accelerators, where necessary, rather than the com-
mon practice of statically dividing bandwidth among links
within the topology of a multi-accelerator server, as seen in
popular direct-connect architectures. This property prevents
bandwidth under-utilization in state-of-the-art rack-scale
multi-accelerator deployments. Moreover, server-scale op-
tical connectivity can reduce the blast radius of individual
accelerator failures in rack-scale ML deployments. Our early
experiments with the prototype of a newly commercialized
server-scale photonic interconnect show how the capability
of the hardware can enable our vision.
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1 Introduction

Optical data transmission offers significant advantages over
its electrical counterpart, notably in achieving higher data
rates and enabling longer communication reach [54]. These
benefits stem from the lower loss incurred in transmitting
light through media like glass, compared to the higher loss
encountered by electrical signals in copper wires. As a result,
light has become the primary medium for data transmission
across various connectivity scales [45].

Optics in the long-haul and datacenter. The early 2000s
marked the commercial adoption of optical communication,
with extensive deployment of optical fiber for long-haul
Internet connectivity [6, 48]. The subsequent rise of cloud
computing spurred the development of cloud datacenters
worldwide. To meet the increasing traffic demands in these
datacenters, cloud providers interconnected switches using
optical fiber in a clos topology [17, 46]. Similarly, growing
bandwidth of server network interface cards caused cloud
providers to further leverage optical fiber to connect compute
servers with top-of-rack switches in datacenter racks [35, 46].
Consequently, the majority of physical connectivity in mod-
ern long-haul and datacenter networks is driven by optics.

Decision-making in the optical domain. Physical con-
nectivity has been underpinned by optics in both long-haul
and datacenter networks; however, routing decisions in these
networks were largely made by electrical packet switches.
Recent work has challenged this strict separation of concerns,
where optical equipment provides fixed logical connectivity
and electrical switches perform dynamic routing. This has
resulted in the emergence of photonic fabrics in both data-
centers [11, 15, 23, 28, 52] and long-haul networks [48, 59]
where optical equipment participates in adapting the physi-
cal connectivity for performance and fault tolerance of work-
loads. Most recently, the ability to reconfigure the topology
of photonic fabrics was found to be useful in accelerating
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performance-sensitive distributed machine learning (ML)
workloads in cloud datacenters [28, 60].

/\ = 1
Figure 1: Our 200mm x 200mm server-scale chip-to-chip in-
terconnect prototype wirebonded in a socket.

The home stretch: server-scale optical connectivity.
While optical connectivity has permeated datacenter racks,
interconnects between chips on compute servers remain elec-
trical [32, 34]. This is true for multi-accelerator servers (e.g.,
Nvidia DGX [7, 20, 33]) that are the building blocks of data-
center clusters and have become workhorses of performance
sensitive ML workloads. These servers consist of a handful
of ML accelerators (e.g., GPUs, TPUs), connected using on-
board electrical interconnects (e.g., PCle [32], NVLink [34],
ICI [23, 60]) either in direct-connect [23, 58] or switched [33,
34] topologies. In this work, we argue that extending optics
to the server board by optically interconnecting accelerators
within a multi-accelerator server can unlock both improved
performance and fault tolerance of ML workloads compared

to both direct-connect and switched multi-accelerator servers.

The key advantage of optically connecting accelerators in
a server is the ability of the server-scale photonic intercon-
nect to dynamically redirect bandwidth from one accelera-
tor to another. This allows accelerators to transmit at their
full egress bandwidth to different neighbors based on the
communication pattern of collective primitives in use (e.g.,
ALLREDUCE) [10]. Using this property, server-scale optical
connectivity can achieve better performance compared to:
e Switched multi-accelerator servers. Switched elec-
trical multi-accelerator server topologies attempt to
leverage the “big-switch” [5, 17, 29] abstraction where
the on-board multi-accelerator interconnect has ideal
contention-free switches (e.g., NVSwitch). However,
inter-accelerator bandwidth within modern servers is
already massive — over 300 gigabytes per second in one
direction [34]— making it harder to stay true to the ideal
switch abstraction. This has resulted in evidence of con-
tention in switched sever-scale interconnects [4, 42].
In contrast, chip-to-chip photonic connectivity enables
contention-free networks between accelerators, simi-
lar to electrical direct-connect topologies without in-
curring the disadvantages of direct-connect topologies,
namely, underutilized accelerator bandwidth due to
fixed inter-accelerator connections.
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e Direct-connect multi-accelerator servers. A key
advantage of on-board chip-to-chip optical connectivity
is the ability to dynamically redirect bandwidth from
an accelerator along connections where it is needed as
opposed to statically partitioning accelerator bandwidth
among a subset of inter-accelerator links in the topology
of the multi-accelerator server, as is common in direct-
connect topologies [23].

Shrinking the blast radius of accelerator failures. Re-
cent work has shown that optical fabrics at the datacenter
scale improve the resilience of large ML jobs — jobs that
collectively use multiple racks of accelerator chips — in the
event of the failure of an accelerator in the direct-connect
cluster [23, 60]. For instance, Google’s TPU supercomputer
migrates a multi-rack ML job away from the rack with a failed
TPU chip to a different rack. In addition to migrating the job,
the new set of TPU racks are directly connected — without
inter-rack electrical packet switching — by reconfiguring the
optical circuit switches that link all TPU racks [23, 60]. Even
so, reconfigurable datacenter fabrics have an excessively
large blast radius, i.e., the extent of impact of the failure of a
single accelerator chip. Not only is the migration expensive
for the job interrupted by failure, it may also be infeasible
to find an entirely unused set of servers for every job with
a single failed TPU. We show that server-scale photonics
enables routing around TPU chip failures to reduce the blast
radius of a single chip failure to only the multi-accelerator
server containing the failed chip.

Prototype chip-to-chip optical hardware. To achieve the
vision of optical multi-accelerator interconnects, we propose
leveraging the recent advances in silicon photonics that have
made server-scale photonic interconnect hardware commer-
cially viable [19]. Figure 1 shows our lab prototype of a recent
server-scale optical interconnect, LIGHTPATH. Accelerator
chips can be stacked on top of tiles of the interconnect, form-
ing a grid (Figure 2c). Each tile on the interconnect grid has
silicon-based photonic components like lasers, waveguides,
switches and photodetectors (Figure 2) to generate, transmit,
switch and receive optical signals between chips. We show
that LIGHTPATH can connect up to 32 accelerators where
each accelerator is 3D stacked on a LIGHTPATH tile equipped
with 16 lasers and photodiodes. One wavelength can sus-
tain up to 224 Gbps bandwidth, and programming optical
switches on LIGHTPATH can take up to 3.7pus.

A brave new world of optical host interconnects. Our
experiments with the lab prototype of a server-scale multi-
accelerator interconnect highlight the capability of the tech-
nology (e.g., reconfiguration delay, signal loss) and how this
capability can enable high-bandwidth and contention-free
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communication between accelerators. Adoption of server-
scale optics will allow interconnect bandwidth to scale be-
yond the limit of copper wires and open the door to taking a
fresh look at several classical networked systems challenges.
For instance, server-scale optics will necessitate the devel-
opment of new host networking software stacks optimized
for circuit-switching as opposed to today’s packetized data
transmission. Moreover, it takes several microseconds to es-
tablish optical circuits between chips, therefore, new optical
resource allocation algorithms will be needed to arrive at
the appropriate trade-off between optical reconfiguration
delay and end-to-end server-scale interconnect performance.
Our goal is to spark a discussion in the community about
the promise and challenges of server-scale optics in next-
generation multi-accelerator servers.

We first provide background on multi-accelerator com-
munication in ML (§2). Next, we introduce our prototype of
a server-scale photonic interconnect, LIGHTPATH, and dis-
cuss its design and capabilities (§3). Then, we present how
server-scale photonics (using LIGHTPATH as an example)
offers novel opportunities in state-of-the-art rack-scale de-
ployments, from resolving bandwidth under-utilization to
limiting the blast radius of individual accelerator failures
(§4). Finally, we discuss challenges that this new technology
presents (§5) and related work (§6).

2 Multi-accelerator communication in ML

Modern ML models have trillions of parameters, making it
infeasible for these models to fit in the memory of a single
accelerator [12, 31]. Therefore, it has become essential to
distribute the training and inference of large ML models on
multiple accelerators (e.g., GPUs, TPUs) with data, model and
pipeline parallelism [12, 27, 44]. For instance, OpenAI and
Microsoft distributed training of the popular GPT-4 model
on thousands of GPUs in a private datacenter cluster [13].

Server-scale multi-accelerator systems (e.g., Intel Gaudi [20],
Nvidia DGX [33], Cerebras WSE [7]) are the building blocks
of larger clusters and datacenters for distributed ML training
and inference. These systems consist of several ML accelera-
tors connected by high-speed on-board electrical intercon-
nects (e.g., PCle [32], NVlink [34]), supporting up to hun-
dreds of gigabytes per second of bandwidth between pairs of
accelerators. Cloud operators connect racks of server-scale
multi-accelerator systems into datacenter-scale deployments
using a network fabric [17, 23]. This allows cloud customers
to lease virtual instances of these systems to deploy their
ML models. Depending on the model size, training and infer-
ence are distributed across accelerators on the same server
or multiple servers in the cloud [23, 35].

Intermediate parameters of the model are accumulated,
reduced and transferred over the network between accel-
erators using collective communication primitives [10] like
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ALLREDUCE in distributed ML. This places collective commu-
nication on the critical path of both training and inference
of distributed ML models. Recently, researchers have shown
that accelerators remain idle during training for large frac-
tions of the time waiting for inter-accelerator communication
to complete [2, 8, 9, 14, 25], highlighting the importance of
efficient collective communication.

3 Server-scale optical interconnects

In this section, we first describe the components of a recently
commercialized server-scale photonic interconnect, LIGHT-
PATH. We then set up a lab prototype of LiGHTPATH and
experimentally study physical-layer characteristics of the
interconnect. Based on the capabilities of the interconnect
highlighted in this section, we will show how it can improve
collective communication during distributed ML in §4.

LIGHTPATH. LIGHTPATH is a photonic fabric in a hybrid
Complementary Metal Oxide Semiconductor (CMOS) pho-
tonics process [21]. Figure 1 shows our lab prototype of
LicHTPATH. A LIGHTPATH wafer consists of 32 tiles that can
interconnect 32 chips by bonding or stacking one chip (e.g.,
GPU, TPU) per tile. Chips are stacked to tiles on LIGHTPATH,
forming a grid (Figure 2c). Each tile on the interconnect grid
has silicon-based photonic components like lasers, waveg-
uides, switches, and photodetectors (Figure 2) to generate,
transmit, switch, and receive optical signals between chips.
Modulators and Photodetectors. At the center of each
LiGHTPATH tile is a Transmitter and a Receiver (Figure 2a).
The optical transmitter (Tx) converts data from the chip to
optical signals by modulating a wavelength of light. In LicHT-
PATH, we use micro-ring modulators (MRRs) to modulate
light signals with data. The optical receiver (Rx) demulti-
plexes multiple wavelengths of light, converts modulated
wavelengths back to electric signals using photodetectors,
and sends them to the Serializer/Deserializer (SerDes).

Light sources and waveguides. Each LIGHTPATH tile has
16 wavelength-multiplexed lasers. Optical waveguides trans-
port optical wavelengths generated by the lasers across tiles.
Waveguides form edges of a two-dimensional grid that con-
nects LIGHTPATH tiles. While each waveguide can support
multiplexed wavelengths that carry data, the number of con-
nections that can be made by one LIGHTPATH tile is limited
by the number of SerDes ports available in the electrical chip.
Optical switches. Each LiGHTPATH tile is equipped with
four optical switches; each switch has a degree of 1 x 3.
We construct these optical switches using Mach-Zehnder
Interferometers (MZIs) [57] as shown in Figure 2b. Each
switch connects to inter-tile optical waveguides and the three
remaining optical switches on the same LIGHTPATH tile. We
can program the MZIs to route wavelengths arriving at a
tile to one of three neighboring tiles via an optical switch.
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(b) Optical switches on a LIGHTPATH tile.

(c) 2X4 tiles on a LIGHTPATH wafer.

Figure 2: Figure 2a shows one tile on LIGHTPATH. Each tile has a Tx/Rx block and four switches. The Tx/Rx block (zoomed in)
modulates data from chips on to wavelengths of light (1) in the transmit direction and detects bits from the modulated light
in the receive direction. Figure 2b hides the Tx/Rx block to reveal the optical waveguide connectivity between switches and
across tiles in LIGHTPATH. The red bar shows optical crossings. Each switch on the tile has a degree of 1X3 and is constructed
using Mach-Zehnder Interferometers (MZIs). Figure 2c shows 2X4 tiles from a LIGHTPATH wafer. In addition to waveguides
connecting switches on a tile (dashed lines), waveguides also connect tiles (solid lines). Optical switches on tiles can configure
circuits like the one between tile A and B (red). Optical fibers (solid lines with arrows) connect one LIGHTPATH wafer to others.

This routing behavior is reconfigurable, allowing us to create
on-demand optical circuits between GPUs on LIGHTPATH.
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Figure 3: We use the setup in Figure 1 and connect two tiles on
the LicHTPATH wafer to a Xilinx FPGA through amplifiers.
We use the FPGA to generate traffic that is sent to Tile 1 on
LicaTPATH. Modulators on the tile transmit the traffic to
Tile 2. We measure characteristics (e.g., bit error rate) using
this transfer. We use an Arduino controller to program the
LicHTPATH device through the JTAG interface [1].
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Figure 4: MZI switches and waveguides are arranged in a grid
on a tile to allow 10,000 waveguides. Transceivers of the tile
are connected to one of these switches.

Chip-to-chip optical circuits. Figure 2c shows an opti-
cal circuit constructed on LIGHTPATH by directing signals
through a series of horizontal and vertical bus waveguides.
A group of MZIs are configured so that a pair of bus waveg-
uides, one from A to B and vice versa, directly connect a
transceiver from tile A to a transceiver from tile B. Figure 2c
shows 4 waveguides entering a tile for simplicity. In reality,
LIGHTPATH can support over 10,000 waveguides per tile since
each waveguide and MZI has a pitch of 3uym (Figure 4).

Fiber connectivity between LIGHTPATH wafers. One
LicHTPATH wafer connects to others using attached fibers.
With attached fibers, we can cascade several LIGHTPATH
wafers to create a rack-scale photonic interconnect. The
waveguides leaving a tile at the edge of a server are attached
to fibers, enabling circuit switching across servers. Fibers
can be attached vertically to the tiles to build 3D topologies.
Microsecond reconfiguration. We fabricated a testbed
that demonstrates the performance of optical devices on
LicHTPATH in GlobalFoundries [16] (Figure 1). Using this
testbed, we show (Figure 3a) that MZIs of optical switches
on LIGHTPATH can be reconfigured within 3.7us. The fast
reconfiguration of optical switches enables the quick estab-
lishment of optical circuits between a pair of chips bonded
on to LIGHTPATH. By design, optical circuits between chips
eliminate contention at intermediate hops on the path.
Measuring signal loss. The circuit from A to B in Figure 3a
crosses two tile boundaries. To quantify feasibility of routing
within a server, we measured the loss of signal quality at the
crossing in Figure 3b. The low-loss (0.25dB) optical crossings
enable routing within the same active silicon device layer.

4 Opportunities

All modern multi-accelerator servers (e.g., Nvidia DGX [33],
Intel Gaudi [20]) use electrical interconnects (e.g., ICI [23],
Nvidia’s NVlinks [34], PCIe [32]) to network the on-board ac-
celerators. Larger ML deployments of rack-scale or datacenter-
scale, use a network fabric to interconnect multi-accelerator
servers. Most cloud providers use the traditional datacenter
technology to network multi-accelerator servers [17, 35]. In
this design, optical fiber connects multi-accelerator servers in
a rack to a top-of-rack packet switch. Racks are connected in
a datacenter clos topology that is underpinned by optics but
still electrically packet-switched (e.g., leaf-spine architecture).
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While these deployments are scalable, ML jobs across multi-
ple racks in this design encounter high communication over-
heads, reducing the training and inference throughput [36].
Even specialized rack-scale multi-accelerator interconnects,
recently announced by Nvidia [51], rely on implementing an
ideal contention-free switch to connect up to 72 GPUs [51].
State-of-the-art large ML deployments. Recently, Google
has developed an ML supercomputer that uses optics to con-
struct large direct-connect accelerator deployments [23, 28,
60]. The supercomputer has 64 racks, where each rack is a
3D torus. Within each rack, there are 16 multi-accelerator
servers, each with 4 TPU chips (i.e., ML accelerators) on-
board. The on-board interconnect is electrical. Even within
the rack, the bulk of the connectivity is electrical, except for
wrap-around links that optically connect opposite faces of
the rack cubes via optical circuit switches. The resulting TPU
rack forms a three-dimensional torus [23]. The optical circuit
switches can be programmed to directly connect multiple
racks or cubes together into larger tori (Figure 5a).

This topology is designed to work with multi-dimensional
bucket ring algorithms [23, 39] for various collective com-
munication primitives [40]. Note that ring-based algorithms
require an accelerator to communicate with only two other
accelerators at a given time, making communication in a
ring on a direct-connect torus congestion free. However,
this architecture leads to two issues: (1) direct-connect tori
under-utilize the bandwidth of each accelerator in multi-
tenant systems and (2) this architecture leads to a large blast
radius in case of the failure of a single TPU. This section
explores how server-scale multi-accelerator photonic inter-
connects, like LIGHTPATH, can alleviate these issues. We use
Google’s TPU cluster [23] in the rest of this section since it
is the largest ML accelerator cluster in the cloud built with a
reconfigurable fabric tailored for ML jobs. Using LIGHTPATH
(§3), the TPUs within a server are connected via waveguides
and TPUs across the server are connected with fibers.

4.1 Resolve bandwidth underutilization

A slice consists of a subset of TPU chips allocated to a single
cloud tenant. Typically, slices can only be allocated in regu-
lar shapes, forming tori of specific dimensions [3]. Tenants
deploy their training and inference jobs on the allocated TPU
slice, during which collective communication primitives are
executed over the slice torus using the multi-dimensional
bucket algorithm [39]. We note that TPU slices allocated
to customers or tenants do not always span multiple racks.
Most inference workloads need smaller slices as model sizes
rarely exceed the memory of all TPUs in a rack. The stan-
dard multi-dimensional bucket algorithm sequentially exe-
cutes data transfers in rings across all the dimensions of the
torus. So, in a 3D torus, 3 rings are executed in the order
of dimensions XYZ. As a result, connectivity in two of the
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three dimensions is always underutilized since only one ring
is active at a given time. To address this under-utilization,
researchers have proposed algorithms that subdivide the
data buffer to execute several multidimensional bucket al-
gorithms in different sequences of dimensions, e.g., YZX
and ZXY, simultaneously such that all the dimensions are
utilized throughout the collective [41]. However, this does
not offer better performance, as we will discuss later.

Our key observation: bandwidth underutilization. We
define congestion in a direct-connect topology as the sce-
nario where multiple transfers occur simultaneously on the
same link, similar to the definition in theoretical computer
science [26, 38]. A slice optimally utilizes the bandwidth only
when it communicates on all three dimensions. Note that due
to the design of a torus, this can only happen when a slice
spans multiple racks. For instance, in Figure 5b, rings along
the Z dimension of all the slices of tenants share the links
between servers in the Z dimension which leads to multiple
transfers on the same link simultaneously causing conges-
tion. If we avoid the Z dimensional ring in all the slices to
prevent congestion, then the bandwidth is underutilized by
33% because the slices have access to only two of the three
dimensions. Figure 5¢ demonstrates how even smaller slices
can suffer up-to 66% lower bandwidth. Slice-1 and Slice-2
share both the Y and Z dimensions with other slices and
can only execute the X dimensional ring without causing
congestion, which leads to suboptimal performance.

Elec. @ cost Optics o cost Elec. f cost Optics f cost

N(E-p NE) D)

Table 1: REDUCESCATTER costs of Slice-1, where N is the
buffer size. Electrical interconnects induce 3X the f cost due
to their inability to fully utilize bandwidth in all dimensions.

7Xa TXa+r

Impact of the underutilized bandwidth on o — § costs.
We use the a — f§ cost model [42] to reason about the cost
of collective communication. « is the software overhead of
sending data buffers. f is the transmission delay, which is in-
versely proportional to the bandwidth of a single link of the
TPU. We model the reconfiguration of optical components
between rounds of the collective with reconfiguration la-
tency r. Since f is several magnitudes of order higher than «,
and also the large buffer sizes of most modern ML models, we
focus on reducing f cost. The ALLREDUCE bucket algorithm
on a D dimensional torus has D REDUCESCATTER operations
followed by D ALLGATHER operations and can reach optimal
B cost of % with simultaneous rings in all D dimensions.
(The constituent REDUCESCATTER operation thus meets its
p-cost lower bound of ~ %.) However, Table 1 shows that
the cost of one REDUCESCATTER on Slice-1 is proportional
to 3 times the optimal (W . %), because the slice is
utilizing the bandwidth of only one dimension of the torus.
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Figure 5: 5a: A TPU cube has TPUs electrically interconnected in a 4x4x4 3D torus. TPUs on every face of the cube are connected
to OCSes which can be reconfigured to build larger 3D tori with multiple cubes. 5b shows a rack with multiple slices. Slices
smaller than a rack are unable to fully utilize the bandwidth on a chip in the electrically interconnected racks. Optically
interconnected racks can leverage reconfigurability to maximally utilize the bandwidth. 5c shows that electrical interconnects
underutilize bandwidth in slices smaller than a rack and reconfigurable optical interconnects like LIGHTPATH maximize the

bandwidth utilization for the same slices.

Opportunity: redirect GPU bandwidth on demand. Server-

scale optical interconnects can solve this problem by fully
utilizing the bandwidth of all the torus dimensions. The out-
put of I/O ports of the TPU chip along different dimensions
can be redirected to one dimension by dynamically program-
ming the MZI switches (§3). The f cost of a single torus
bucket algorithm with redirected bandwidth is the same as
a executing several torus bucket algorithms simultaneously.
Specifically, given a buffer size of N, D dimensions, and total
bandwidth B, the bandwidth per dimension is % Dividing
N to run simultaneous bucket algorithms across all D di-
mensions yields a cost of % . % = % since each dimension
has % bandwidth. This is the same as running the algorithm
once, using all the bandwidth in each step (only feasible with
LIGHTPATH or other photonic interconnects), also with a
cost of %. The additional redirected wavelengths along a
given dimension are all accommodated on different waveg-
uides which avoids congestion within waveguides.

In Figure 5c, we program the MZI switches on Slice-1
to redirect all of their bandwidth along the ring in the X
dimension and execute one instance of the algorithm. The
algorithm’s f§ cost using reconfigurable optical interconnects
is 3% lower compared to using static electrical interconnects
because we redirect the unused bandwidth to the X dimen-
sion. The main tradeoff of reconfiguration is a constant r
time units before the start of a ring which is 3.7us in LicHT-
PATH. Similarly, in Slice-3, we redirect the bandwidth of the Z
dimension to rings along X and Y dimensions. The  cost for
Slice-3 in Table 2 is 1.5 higher for electrical interconnects.

4.2 Shrink the blast radius of failures

In this section, we argue that reconfiguration reduces the
blast radius of failures. Replacing a failed chip with a chip in
the same or a different rack causes congestion in the electrical
torus. The current policy avoids this by handling faults at
rack granularity [60] leading to a large blast radius.

Slice-1(2x4x4)

ZE
=225
S5
=3

Rack 2

I\

Slice-1(2x 4 x 4)

Rack
(b) Multi-rack

Figure 6: In 6a, replacing the failed chip (red) with one of
the free chips (blue) is impossible without congestion. In 6b,
replacing the failed chip (red) with a free chip in rack 2 causes
congestion on the Y dimension (purple line).

(a) Single rack

Congestion within a rack. Figure 6a shows a single rack
with a failed TPU in Slice-3 (marked in red) and free TPUs in
the same rack (shown in blue). To utilize a free TPU, we must
connect the failed chip’s neighbors in the X and Y dimension
rings to one of the free TPUs. We need to connect TPUs 5 and
9 to a free chip to complete the ring for 5, 9 and 11 along the Y
dimension. While reaching any free chip from TPU 5 without
causing congestion is straightforward, doing the same from

Elec. f§ cost
NG N ()5

Elec. o cost Optics « cost Optics f cost

3Xa 3Xa+r

)@ Fedd
Table 2: REDUCESCATTER « — f§ costs of Slice-3 with D = 2,
forming 4 rings of size 4 each in X and Y dimensions. The
bucket algorithm executes in two stages. It first executes rings
in the X dimension with a buffer size of N with costs shown
in the first row. After these rings complete, the algorithm
executes rings in the Y dimension with a buffer size of %
whose costs are shown in the second row.

3Xa 3Xa+r
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TPU 9 without congestion is impossible. Any chosen free
chip can only be reached from TPU 9 through TPUs 5, 6, or 8
and then taking the link between servers in the Z dimension.
This constraint arises because any alternative path would
induce congestion on Slice-4. If the path reaches 5 or 6, there
is congestion on the ring through TPUs 5, 11, and 9. If the
path reaches TPU 8, congestion impacts both rings, through
TPUs 5, 11, and 9 and through 8, 6, 10, and 12.
Congestion across racks. In Figure 6b, Slice-2 in rack 1,
with 8 TPUs, has a failed TPU. While rack 1 has no available
chips, rack 2 has 4 free chips. So, TPU 4 should connect to a
free chip in rack 2. However, connecting TPU 4 through the
X or Y dimensions would cause congestion in Slice-2 or other
slices of rack 1, as all orange TPUs are allocated to slices.
Thus, TPU 4 must use the Z dimension to reach rack 2 via the
OCS. The network topology limits TPU 4’s communication
to TPUs along the purple line. Since Slice-1’s 3D torus bucket
ring algorithms already use this line’s Y dimension in rack 2,
any new traffic will cause congestion.

Fiber
Waveguide

Physical
(optics)

pu

Y

Slice-1(2x4 x 4)

XRing N @EE
YRing EE-EEH
' EE-EE

Figure 7: After the failure of TPU 7 (red) in Slice-3, the Y-
dimension ring is broken since there is no TPU between 9
and 5. The X-dimension ring is broken since there is no TPU
connected to 8. Optical reconfiguration can connect a free
TPU (1) to TPUs 9, 5 and 8 to fix the broken rings.

Logical

Opportunity: Establish non-overlapping optical cir-
cuits to replace failed chips. The root cause of congestion
is multiple paths sharing a single electrical link. Increasing
the number of electrical links between TPUs reduces inter-
connect congestion but introduces on-chip congestion due
to the absence of electrical switching on chips. Traffic not
destined for a TPU must be forwarded, consuming its band-
width. The network will be congestion-free if each path has
a dedicated end-to-end circuit. An optical interconnect like
LicHTPATH provides thousands of waveguides between chips
and 10s of fibers across servers. We propose to leverage these
physical links to establish non-overlapping circuits. We can
program MZI switches in the rack on each TPU (§3) to estab-
lish a dedicated circuit between TPUs. In Figure 7, we show
how optical circuits can repair the broken rings along the X
and Y dimensions in Slice-3 from Figure 6a by replacing the
failed TPU with TPU 1. The neighbors of the failed TPU in
the broken rings are now optically connected to TPU 1 with
end-to-end optical circuits. We place these optical circuits
on separate waveguides and fibers to avoid congestion and
achieve optimal performance.
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5 Challenges

While multi-accelerator photonic interconnects are promis-
ing, we must solve many technical challenges to realize them.
Exploding paths. Each tile can contain tens of thousands
of waveguides, providing a circuit entering a tile with thou-
sands of possible paths. Optimizing these paths for all circuits
is a scalability challenge. While simple collective operations,
such as those using ring ALLREDUCE where each accelerator
communicates with only two others, are relatively straight-
forward, handling all-to-all traffic is much more complex.
Decentralized algorithms. Another critical challenge is
developing algorithms for traffic patterns that are outside
known collective operations, such as those required for Mix-
ture of Experts [43] (MoE) inference. MoE inference relies on
a runtime gating function, necessitating dynamic program-
ming of circuits. A naive solution would rely on a centralized
controller tracking the state of every waveguide to avoid
overlaps. However, this approach does not scale well when
dealing with hundreds of accelerators, highlighting the need
for decentralized algorithms to manage dynamic traffic.
Minimizing fiber requirement for fault tolerance. Fault-
tolerant circuit pathfinding must intelligently manage the
addition of fibers, aiming to minimize fiber usage while ef-
fectively managing faults. This requires sophisticated algo-
rithms capable of dynamically reconfiguring the network
in real-time, ensuring continued operation despite faults
without excessively increasing infrastructure requirements.

6 Related Work

Recent work leverages optical components for failure re-
silience [59], capacity augmentation [47, 48] and long-running
bulk data transfers [22]. There has also been growing com-
mercial interest in making optics an active part of routing in
datacenter interconnects. For instance, Google has recently
replaced the spine layer packet switches in their datacenter
interconnects with optical circuit switches [23, 35, 46]. Re-
searchers have used optics for reconfiguring the datacenter
interconnect [18, 30, 49, 53]. Researchers have used silicon
photonic interconnects for improving the performance of
machine learning workloads [24, 37, 50, 55, 56]. This work
focuses on slow and infrequent reconfiguration of the inter-
connect, called topology engineering.
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